Section C Practice Problems

Problem 1

Andre is building a tower out of different foam blocks. These blocks come in three different thicknesses: 12\frac{1}{2} foot, 14\frac{1}{4} foot, and 18\frac{1}{8} foot. 

Andre stacks two 12\frac{1}{2}-foot blocks, two 14\frac{1}{4}-foot blocks, and two 18\frac{1}{8}-foot blocks to create a tower. What is the height of the tower in feet? Explain or show how you know.

Show Solution
Solution
1341 \frac{3}{4} feet tall. Sample response: 12+12=1\frac{1}{2} + \frac{1}{2} = 1 and 18+18=28\frac{1}{8} + \frac{1}{8} = \frac{2}{8}, and I know that 28\frac{2}{8} is the same as 14\frac{1}{4}. Now I have 14+14+14\frac{1}{4} + \frac{1}{4} + \frac{1}{4}, which is 34\frac{3}{4}. So the tower is 1+341 + \frac{3}{4} or 1341\frac{3}{4} feet tall.

Problem 2

Find the value of each of the following sums. Show your reasoning. Use number lines if you find them helpful.

  1. 110+3100\frac{1}{10} + \frac{3}{100}
    Number line. Scale 0 to 1. Evenly spaced by tenths.
  2. 24100+410\frac{24}{100} + \frac{4}{10}
    Number line. Scale 0 to 1. Evenly spaced by tenths.
  3. 710+13100\frac{7}{10} + \frac{13}{100}
    Number line. Scale 0 to 1. Evenly spaced by tenths.
Show Solution
Solution
  1. 13100\frac{13}{100}, because 110=10100\frac{1}{10} = \frac{10}{100}, so 10100+3100=13100\frac{10}{100} + \frac{3}{100} = \frac{13}{100}.
  2. 64100\frac{64}{100}, because 410=40100\frac{4}{10} = \frac{40}{100}, so 24100+40100=64100\frac{24}{100} + \frac{40}{100} = \frac{64}{100}.
  3. 83100\frac{83}{100}, because 710=70100\frac{7}{10} = \frac{70}{100}, so 70100+13100=83100\frac{70}{100} + \frac{13}{100} = \frac{83}{100}.

Problem 3

Is the value of each expression greater than, less than, or equal to 1? Explain how you know.

  1. 310+7100\frac{3}{10} + \frac{7}{100}
  2. 1310+7100\frac{13}{10} + \frac{7}{100}
  3. 30100+710\frac{30}{100} + \frac{7}{10}
Show Solution
Solution
  1. Less than 1. I know that 310\frac{3}{10} needs 710\frac{7}{10} to make 1, but I only have 7100\frac{7}{100}, which is less than 710\frac{7}{10}.
  2. Greater than 1. I know that 1310\frac{13}{10} is already greater than 1. Adding something else to it makes it even greater.
  3. Equal to 1. I know that 710\frac{7}{10} needs 310\frac{3}{10} to make 1, and 30100\frac{30}{100} is the same as 310\frac{3}{10}.

Problem 4

Diego and Lin continue to play with their coins.

Diego says he has exactly 3 coins whose thickness adds up to 50100\frac{50}{100} centimeters (cm). What coins does Diego have? Explain or show your reasoning.

coin thickness (cm)
1 centavo 12100\frac{12}{100}
10 centavos 22100\frac{22}{100}
1 peso 16100\frac{16}{100}
2 pesos 14100\frac{14}{100}
5 pesos 210\frac{2}{10}
20 pesos 25100\frac{25}{100}
Show Solution
Solution

Sample responses:

  • Diego has a 1-peso coin, 2-peso coin, and a 5-peso coin. The combined thickness of the 1-peso and 2-peso coins is 30100\frac{30}{100} cm, because 16100+14100=30100\frac{16}{100} + \frac{14}{100} = \frac{30}{100}. Combining that with the 5-peso coin gives 30100+210\frac{30}{100} + \frac{2}{10} or 30100+20100\frac{30}{100} + \frac{20}{100}, which is 50100\frac{50}{100} cm.
  • Diego has two 2-peso coins and one 10-centavo coins, because 14100+14100+22100=50100\frac{14}{100} + \frac{14}{100} + \frac{22}{100} = \frac{50}{100} cm.
  • Diego has a 1-centavo coin, a 10-centavo coin, and a 1-peso coin, because 12100+22100+16100=50100\frac{12}{100} + \frac{22}{100} + \frac{16}{100} = \frac{50}{100} cm.

Problem 5

A chocolate cake recipe calls for 2 cups of flour. You gather your measuring cups and notice you have the following sizes: 12\frac{1}{2} cup, 13\frac{1}{3} cup, 14\frac{1}{4} cup, and 16\frac{1}{6} cup.

  1. What are the different ways you could use all 4 measuring cups to measure 2 cups of flour?

  2. What are other ways you could use just some of the 4 measuring cups to measure exactly 2 cups of flour?

Show Solution
Solution
Sample responses:
  1. All measuring cups:
    • Two 12\frac{1}{2}-cup, two 14\frac{1}{4}-cup, two 13\frac{1}{3}-cup, and two 16\frac{1}{6}-cup measures
    • One 12\frac{1}{2}-cup, two 14\frac{1}{4}-cup, one 13\frac{1}{3}-cup, and four 16\frac{1}{6}-cup measures
    • Two 12\frac{1}{2}-cup, two 14\frac{1}{4}-cup, one 13\frac{1}{3}-cup, and two 16\frac{1}{6}-cup measures
  2. Some of the measuring cups:
    • Four 12\frac{1}{2}-cup measures
    • One 12\frac{1}{2}-cup, two 14\frac{1}{4}-cup, and three 13\frac{1}{3}-cup measures
    • One 13\frac{1}{3}-cup, and ten 16\frac{1}{6}-cup measures
    • Four 14\frac{1}{4}-cup, one 13\frac{1}{3}-cup, four 16\frac{1}{6}-cup measures

Problem 6

A dime is worth 110\frac{1}{10} of a dollar and a penny is worth 1100\frac{1}{100} of a dollar.

  1. What are different combinations of dimes and pennies that represent 89100\frac{89}{100} of a dollar? Use equations to show your reasoning.
  2. A nickel is worth 5100\frac{5}{100} of a dollar. What are some different combinations of dimes, nickels, and pennies that represent 89100\frac{89}{100} of a dollar? Use equations to show your reasoning.
Show Solution
Solution
  1. Sample responses:
    • 89 pennies. 89×1100=8910089 \times \frac{1}{100} = \frac{89}{100}
    • 79 pennies and 1 dime: 79×1100+1×10100=8910079 \times \frac{1}{100} + 1 \times \frac{10}{100} = \frac{89}{100}
    • 69 pennies and 2 dimes: 69×1100+2×10100=8910069 \times \frac{1}{100} + 2 \times \frac{10}{100} = \frac{89}{100} 
    • 59 pennies and 3 dimes: 59×1100+3×10100=8910059 \times \frac{1}{100} + 3 \times \frac{10}{100} = \frac{89}{100}
    • 49 pennies and 4 dimes: 49×1100+4×10100=8910049 \times \frac{1}{100} + 4 \times \frac{10}{100} = \frac{89}{100}
    • 39 pennies and 5 dimes: 39×1100+5×10100=8910039 \times \frac{1}{100} + 5 \times \frac{10}{100} = \frac{89}{100}
    • 29 pennies and 6 dimes: 29×1100+6×10100=8910029 \times \frac{1}{100} + 6 \times \frac{10}{100} = \frac{89}{100}
    • 19 pennies and 7 dimes: 19×1100+7×10100=8910019 \times \frac{1}{100} + 7 \times \frac{10}{100} = \frac{89}{100}
    • 9 pennies and 8 dimes: 9×1100+8×10100=891009 \times \frac{1}{100} + 8 \times \frac{10}{100} = \frac{89}{100}
  2. Sample responses:
    • 4 pennies, 1 nickel, and 8 dimes: 4×1100+1×5100+8×10100=891004 \times \frac{1}{100} + 1 \times \frac{5}{100}+ 8 \times \frac{10}{100} = \frac{89}{100}
    • 9 pennies, 6 nickels, 5 dimes: 9×1100+6×5100+5×10100=891009 \times \frac{1}{100} + 6 \times \frac{5}{100} + 5\times \frac{10}{100} = \frac{89}{100}
    • 4 pennies, 9 nickels, and 4 dimes: 4×1100+9×5100+4×10100=891004 \times \frac{1}{100} + 9 \times \frac{5}{100}+ 4 \times \frac{10}{100} = \frac{89}{100}